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Abstract

The need to reach high temperatures in an inertial fusion energy (IFE) target (or a target for the study of High Energy

Density Physics, HEDP) requires the ability to focus ion beams down to a small spot. System models indicate that

within the accelerator, the beam radius will be of the order of centimeters, whereas at the final focal spot on the target, a

beam radius of the order of millimeters is required, so radial compression factors of order ten are required. The IFE

target gain (and hence the overall cost of electricity) and the HEDP target temperature are sensitive functions of the

final spot radius on target. Because of this sensitivity, careful attention needs to be paid to the spot radius calculation.

We review our current understanding of the elements that enter into a systems model (such as emittance growth from

chromatic, geometric, and non-linear space charge forces) for the final focus based on a quadrupolar magnet system.
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1. Introduction

The production of electric power from inertial
fusion targets driven by heavy ion beams requires
the ability to focus ion beams onto small targets.
Systems models indicate that within the accelera-
tor, the beam radius will be of the order of
centimeters, whereas at the final focal spot on the
target beam radii of the order of millimeters are

www.elsevier.com/locate/nima
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required, so radial compression factors of order
ten are required. Target gain, and hence the overall
cost of electricity, is a sensitive function of the final
spot radius on the target. In order to determine
optimum beam, accelerator, target and other
machine parameters, a systems code IBEAM [1]
has been developed, which uses algebraic relations
to model many aspects of the driver system and to
develop a self-consistent model of a heavy ion-
driven inertial fusion power plant. Because of the
sensitivity of spot radius on target gain, careful
attention needs to be paid to the part of the model
that calculates the spot radius. For use as part of a
previous systems assessment study [2], a model was
created which estimated the contribution to the
focal spot from various physical effects in the final
focusing section of a driver. Since the time that
model was published, numerical simulations,
bench-marked by experiments, have led to a
greater understanding of the processes that affect
the final spot size. One of the major recent
developments has been a more quantitative under-
standing of neutralized ballistic transport through
a final focusing chamber. Neutralized ballistic
focusing experiments, (the Scaled Final Focus
Experiment [3], Neutralized Transport Experiment
[4]), analytic calculations, simulations using the
hybrid-PIC code LSP, all point to the feasibility of
focusing highly neutralized (499%) beams. It has
been found, however, that non-linear residual
electric fields can cause emittance growth, and
this has significant consequences for an optimized
accelerator. In this paper, we update the focusing
model, based on our most recent analytical and
numerical calculations.
2. Elements of the model for the final spot radius

2.1. The beam edge

Our goal is to be able to estimate the spot radius
over a wide range of accelerator configurations.
For that reason and because the power require-
ment on the target relies primarily on a knowledge
of the lowest order moments, we confine ourselves
to the simplest ‘‘envelope’’ description of the
beam. The ‘‘envelope’’ should be regarded as the
beam edge for transport within the accelerator,
where the beam will likely be space charge
dominated. For a uniform distribution of charge
(an appropriate representation for a space charge
dominated beam), the beam edges are designated
a, b (in the x, y directions, respectively, transverse
to the primary beam motion). For uniform
distributions, the quantities a and b are twice the
root mean square of the average of the respective
transverse coordinates, i.e. a ¼ 2hx2i1=2 and b ¼

2hy2i1=2: Since a is not necessarily equal to b, we
allow for elliptical beams (as required by some
target models), which is a generalization to the
model of Ref. [2] which considered only circular
beams. The envelope equations remain valid for
non-uniform distributions (as long as elliptical
symmetry is maintained, and the eccentricity of the
elliptical density contours do not vary with radius
[6], although the ellipticity may vary, with long-
itudinal position z). For non-uniform distribu-
tions, a and b continue to represent twice the rms
averages of the particle coordinates x and y. At the
target, the beam is expected to be emittance
dominated, and because propagation from final
focus to target tends to rotate the (x; pxÞ and ðy; pyÞ

phase space distribution (where px and py are the
transverse momenta), the density distribution
nðx; yÞ on the target will ideally be Gaussian with
respect to x and y. That is, nðx; yÞ ¼
n0 exp½�2ðx2=a2 þ y2=b2

Þ	; where n0 is the density
on-axis. For this distribution, the fraction (1�1/
e2), i.e. approximately 86.4%, of the beam is
contained within the ellipse with semi-axes a and b.
Non-linear optics and non-linear space charge can
change this value, but simulations indicate that
Gaussian distributions at the target can be good
approximations.

2.2. Envelope considerations

The rms envelope equations couple a and b

through space charge:

d2a

dz2
¼ Ka þ

2Q

a þ b
þ

�2x
a3

(1)

d2b

dz2
¼ �Kb þ

2Q

a þ b
þ

�2y

b3
. (2)
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Here z is the longitudinal coordinate in the lab
frame, Q is the effective perveance, �x and �y are
the unnormalized emittances in the x and y

directions, and K ¼ B0ðzÞ=½Br	 is the magnetic
quadrupole focusing function where B0 is the
magnetic gradient and ½Br	 is the particle rigidity.
This equation is valid when the beam density
distribution is elliptical (and characterized by a
single ellipticity at each z), and when image forces
and non-linear forces can be neglected. In general,
the emittances will vary with z and an auxiliary
equation would be needed to integrate Eqs. (1) and
(2), but for uniform density, mono-energetic
beams the emittances are constant and the
equations can be integrated.

Consider a region over which K is constant (e.g.
in a ‘‘hard’’ edged quad, or within the chamber
where K is zero). Multiplying Eq. (1) by a and
Eq. (2) by b, adding the result and integrating
allows the calculation of an energy-like constant H

given by:

2H ¼ a02 þ b02
� Ka2 þ Kb2

� 4Q lnða þ bÞ �
�2x
a2

�
�2y

b2
. ð3Þ

Here a0 ¼ da=dz and b0
¼ db=dz: After exit from

the final focus magnet the beam will be converging
towards the target with the following approximate
conditions:

K ¼ 0; a0 ¼ �yx; b0
¼ �yy; a ¼ yxd; and b ¼

yyd; where d is the distance between the end
of the last magnet and the focal spot, and yx

and yy are the focusing half-angles. At the
focal spot itself with radii rx ¼ a and ry ¼ b;
the smallest spot obtainable will be at a waist,
in which case a0 ¼ b0

¼ 0: (If either a0 or b0

are finite at the point of minimum area, we
assume nevertheless that a0

5yx and b0
5yy:) We

then find

y2x þ y2y �
�2x
r2x

þ
�2y
r2y

þ 4Q ln
dðyx þ yyÞ

rx þ ry

� �
. (4)

When �x and �y ¼ 0; then Eqs. (1) and (2) imply
a00 � b00

¼ 0; a0 � b0
¼ const ¼ �ðyx � yyÞ; and

a � b ¼ �ðyx � yyÞz þ a0 � b0: If there is a true
waist at the target ða0 � b0

¼ 0Þ then yx � yy ¼ 0;
and by symmetry

y2x ¼ y2y ffi 2Q ln
dðyx þ yyÞ

rx þ ry

� �
.

In the other extreme ðQ ¼ 0Þ; Eqs. (1) and (2) are
separable with the well-known approximate solu-
tions

y2x �
�2x
r2x

and y2y �
�2y
r2y
.

We thus infer that an approximate solution for
arbitrary Q, �x; and �y is given by

y2x �
�2x
r2x

þ 2Q ln
dðyx þ yyÞ

rx þ ry

� �

and

y2y �
�2y
r2y

þ 2Q ln
dðyx þ yyÞ

rx þ ry

� �
. (5)

Eq. (5) is thus only approximately true for
intermediate values of Q, �x; and �y: However,
the sum of y2x þ y2y found from Eq. (5) is consistent
with the more exact relation Eq. (4), so for the
purposes of this paper we adopt Eq. (5) as our
generalization of the relation between the focusing
angles, the final elliptical spot radii, the perveance
and emittances for elliptical spots, but bearing in
mind its approximate nature for intermediate
values. Also, Eq. (5) is valid when Q, �x; and �y

are constants. When they are not constant Eq. (5)
still may be employed to approximately relate the
final spot radius to the focusing angles yx and yy if
the parameters are chosen appropriately. Because
of the steep power of rx and ry in the emittance
terms in Eq. (3), the final emittance should be used
in Eq. (5). However, because of the logarithmic
dependence of the radius in the perveance term, an
appropriately averaged perveance through the
fusion chamber is required.

2.3. Contributions to the final emittance

To calculate the final normalized emittance at
the target, contributions to emittance dilution
throughout the machine must be included. In the
systems model, an estimate of the normalized
emittance of each beam as it leaves the injector is



ARTICLE IN PRESS

J.J. Barnard et al. / Nuclear Instruments and Methods in Physics Research A 544 (2005) 243–254246
first obtained; to that are added contributions
from non-linear errors in the magnetic fields of the
focusing quadrupoles, chromatic aberrations and
geometric aberrations in the final focus system,
and the imperfect non-linear neutralization of the
beam in the chamber. We expect these contribu-
tions to be uncorrelated and so the contributions
are added in quadrature. Pointing errors are added
separately in quadrature with the beam radius.
2.4. Injector and accelerator

The normalized emittance from the injector �nxi

is given by

�nxi ¼ �nyi ¼ 2ðkT=mc2Þ1=2rinj. (6)

Here T is the temperature of the source (about
1000 1C or 0.1 eV for hot plate sources or 1 eV
for plasma sources), m is the ion mass, rinj is the
source radius (determined by using the Child–-
Langmuir law to calculate current, under the
constraint of voltage breakdown relations). It has
been found empirically [7] that imperfect beam
optics increases this ideal by about a factor of two,
and so in the systems code this emittance was
multiplied by two to take account of this effect.

In the accelerator, non-linear magnetic fields
give rise to emittance growth [8]. Also, quadrupole
strength errors can create small mismatches of the
beam. If the energy from those mismatches is
thermalized, one may estimate the increase of
emittance from each quadrupole and the result can
be shown to have the same scaling as calculated in
Ref. [8]. The contribution to the emittance squared
from each quadrupole is

Dð�2nxqÞ � 4a2b2Q
DBq

Bq

� �2

. (7)

Here DBq is the component of the error magnetic
field at the beam radius, which varies randomly
from magnet to magnet. Contributions from all
quads are summed (again in quadrature) to obtain
an estimate of the final normalized emittance �na at
the end of the accelerator. Nominal values of
DBq=Bq of 0.1% are typically assumed in system
code calculations. Note that b2Q is proportional to
the line charge density, which, in turn, is propor-
tional to the potential energy across the beam. By
adjusting the coefficient ðDBq=BqÞ; the sensitivity
of spot size to emittance growth from a variety of
mechanisms can be explored.
2.5. Longitudinal emittance growth

As discussed in the next section, a spread in
parallel momentum will lead to an increase in
emittance as the beam passes through the final
focusing system. Just as in the transverse case
where non-linearities give rise to transverse emit-
tance growth, it is expected that voltage variations
in the induction cell pulsers will give rise to
momentum spread in the beam [9]. In this case,
the normalized longitudinal emittance is propor-
tional to the product of the momentum spread and
the bunch length. At the ith induction gap, an rms
momentum spread dpi will be introduced as a
result of the voltage error dV i; such that dpi ¼

ð1=2Þðp=V ÞdV i: (Here p ¼ ð2mqV Þ
1=2 is the (non-

relativistic) momentum, and qV is the energy of an
ion after it transits the ith gap.) It is assumed that
the voltage errors ultimately are phase mixed and
are not corrected soon after generation. Each gap
thus contributes dpili to the longitudinal normal-
ized emittance where li is the bunch length at the
ith gap. The voltage increment at each gap is
DVi ¼ LdV=ds; where L is the distance between
gaps and dV=ds is the average accelerating
gradient. The minimum number of pulsers at each
gap is DVi=Vpulser; where Vpulser is the maximum
voltage standoff of each pulser, e.g. around 10 kV
for typical thyratrons. Assuming the errors from
each pulser dVpulser add stochastically, dVi ¼

½ðLdV=dsÞVpulser	
1=2 ðdVpulser=VpulserÞ: For pur-

poses of obtaining estimates of momentum spread,
values of dVpulser=Vpulser of about 1% are deemed
typical of standard present technology.
The momentum spread at the end of the

accelerator dpa is thus given by

dp2
a ¼

lI

la
dpI

� �2

þ
1

la

� �2 X
i

dp2
i l2i , (8)

where dpI and lI are the momentum spread and
bunch length of the beam at the end of the injector,
respectively, which is calculated separately from
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errors produced from the individual gaps. Incor-
porating the discussion preceding Eq. (8) we find

dp2
a

p2
a

¼
1

4V 2
aDt2a

dV2
IDt2I þ

X
i

dVpulser

Vpulser

� �2
"

� VpulserL
dV

ds

� �
Dt2i

�
. ð9Þ

Here DtI; Dti; and Dta are the pulse durations at
the injector, ith gap, and accelerator end, respec-
tively, and dV I is the voltage error on the injector,
estimated to typically be of order 10�3 of the
injector voltage. To estimate the momentum
spread dpf at the final focus, one may assume
conservation of longitudinal emittance, implying
dpf=pf ¼ Cdpa=pa; where C � la=lf is the compres-
sion ratio, and pf and lf are the ion momentum and
bunch length at the final focus, respectively.

2.6. Chromatic aberrations in final focus

In Refs. [10,11] theory and simulations sug-
gested that the contribution to the normalized
emittance from chromatic aberrations in the final
focus magnets alone can be written in the form

�cx ¼ acxd
dp

p

� �
y2x. (10)

Here dp is the rms longitudinal momentum
deviation from the design momentum p. In Ref.
[11], acx was an empirically derived constant found
to be approximately 6. We have derived a set of
moment equations, which treats the fractional
momentum spread dp=p as a first-order quantity in
the equations of motion. The set of moment
equations, in effect, generalize the envelope
equations through second-order. We briefly pre-
sent the derivation of the moment equations in
Appendix A.

Integration of Eqs. (A.6) for particular focusing
systems has found acx and acy in the range 4–12,
although some systems with chromatic aberrations
contributing anisotropically may have acx as small
as 2.4, for example with acy approximately 6. The
integration (and hence determination of acx and
acy) depends sensitively on the phase of the
matched envelope on which the initial value of
hxdp=pi is assumed to be zero. In principle, this
evolves from a value of zero from the source, and
is thus calculable for a given design; however, for
simulations of final focus for which only the last
dozen or less lattice periods are included, the
indeterminacy of hxdp=pi leads to some uncer-
tainty in the values of acx and acy:

2.7. Geometric aberrations in final focus

In Ref. [12], an estimate was made of third-order
quantities for a heavy ion fusion focusing system.
The result can be summarized in the following
equation for the increase in the spot size from
geometric aberrations

Dr ¼
dy3

bGðbÞ4
�

6:9ðd2=lquadÞy
3; d412:5lquad;

1080lquady
3; do12:5lquad:

(

(11)

Here d is the final focal distance, lquad is the length
of the final quadrupole magnet, and b �

Bquadd=ð½Br	yÞ ffi 1:25d=lquad; where the latter
approximate equality assumes: the thin lens
approximation; the ratio of the aperture radius
to the maximum radius of the beam envelope is
1.25; and the change in a0 through the final lens is
assumed to be equal to the convergence angle.
Also, G½b	 is a function defined in Ref. [12] and
approximated here in Eq. (17). In Ref. [12], y
represented the initial emittance divided by the
design spot radius, which for small aberrations is
equal to the final focus convergence angle. Eq. (11)
was based on a doublet final focus system (Ref.
[13]), a waist-to-waist envelope trajectory, and
space charge was absent in the calculation. Particle
trajectories from linear fields were used as the
unperturbed orbits and non-linearities from pseu-
do-octupole, and Bz, arising from the fringe fields
of the quadrupoles and non-paraxial terms in the
equations of motion were included. Simulations
have found that, for four-quadrupole systems
including space charge, the spot size given by
Eq. (11) overestimates the contributions of geo-
metric aberrations by about a factor of 3, for the
parameters of the Neutralized Transport Experi-
ment [4]. We have not yet analytically reevaluated
the geometric aberrations in the context of a 4 or
more quadrupole final focus system in the presence
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of space charge, analytically. We have parameter-
ized our uncertainty in this quantity by introdu-
cing a factor ag; where the emittance growth from
geometric aberrations �gx is given by

�gx ¼ 1080aglquady
4
x, (12)

thus giving a spot radius Dr from geometric
aberrations alone of Dr  1080aglquady

3
x; which

agrees with the scaling of Eq. (11), but where
the coefficient is numerically determined for a
particular magnet layout, nominally assumed to
be 0.32.

2.8. Emittance growth and neutralization in the

chamber

The topic of emittance growth and neutraliza-
tion in the chamber has been the subject of
comprehensive numerical and analytic study
[15–28]. For simplicity, we have assumed ballistic
neutralized transport.

2.9. Plasma plug

Simulations have shown that when a ‘‘plasma
plug’’ (a region of ionized chamber gas in electrical
contact with the walls of the chamber) is available
after the beam leaves the final focus magnet, the
beam space charge will draw and entrain electrons
into the beam providing nearly complete neutra-
lization of the beam space charge as it propagates
to the target. However, the neutralization is not
perfect and this process will only continue until the
beam potential is reduced to the order mev

2
0=2

[22–24], where me is the electron mass. This is
because in the beam frame, the electrons will have
this kinetic energy relative to the beam ions, and
they will not be trapped or entrained by potentials
that are lower than this energy. It is straightfor-
ward to show that the resulting beam perveance
Qc0 (in the limit of large initial beam current) is
given by

Qc0 ffi aQZeffme=mi. (13)

Here aQ is a parameter of order unity (obtained
from simulations), Zeff is the effective charge state
of the beam ions as they traverse the chamber (and
due to stripping may not be equal to the initial
charge state), and mi is the ion mass. At very low
ion currents, the perveance of the beam itself is less
than that given by Eq. (13) and simulations [21]
show that for initial beam perveance less than Qc0,

neutralization is ineffective, and for initial beam
perveance greater than Qc0, the neutralized per-
veance approaches Qc0, so that in general, the
neutralized plasma plug perveance is given by

Qc � Qc0ð1� expð�Qb=jQc0jÞÞ. (14)

Here Qb is the unneutralized beam perveance.
Although the electrons provide overall charge
neutralization, the distribution of electrons will
not match perfectly the distribution of ions. The
space charge field of the beam is therefore non-
linear and the beam emittance grows as a result.
Analytic work on beams with non-uniform space
charge distributions [28] indicates that the emit-
tance squared grows linearly with propagation
distance according to

dð�2xÞ

dz2
ffi

a2sc
2

Q2. (15)

Here asc (corresponding to l of Ref. [28]) is a
parameter that depends on the distribution of
charge (of order 1/2 for a variety of non-uniform
charge distributions), and Q is the effective beam
perveance. For propagation through the chamber,
the contribution to the total emittance growth
from non-linear space charge is thus given by

�2sc �
a2sc
4

Q2
cd2

þ �20. (16)
2.10. Volumetric plasma neutralization

When the target is heated by a ‘‘foot’’ pulse,
X-rays will be emitted and can photoionize the
chamber gas in the vicinity of the target. This will
provide additional electrons to neutralize the
beam, which can be supplied continuously along
the ion beam path. Since this neutralization
method does not require the electrons to become
entrained with the ions, much higher space charge
neutralization fractions than are given by Eqs. (13)
and (14) can be obtained. In fact, the residual
space charge potential may be regarded as
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negligible compared with the self-focusing effect of
the residual current.

In Ref. [25], a theory of the residual net current
of a beam propagating through a plasma has been
obtained. It is based on finding solutions of the
equations of motion of an electron fluid and
Maxwell’s equations. It was shown that Maxwell’s
equations and the equations of motion of the
electrons fluid have a conservation law for the
generalized vorticity O where O is defined as

O � r� pe � eB, (17)

where pe is the electron fluid momentum and B is
the self-magnetic field of the electron fluid and
beam. In the limit of a long beam, where steady
conditions arise, Ampere’s law implies r � B ¼

m0J so that r � r � pe
� 	

¼ m0eJ: For a cylindrical
symmetrical beam, Stokes theorem implies
2prðr � peÞz ¼ m0eIðrÞ; where I(r) is the long-
itudinal current within radius r. The total net
current having a radial extent the radius of the
beam rb is thus given by

Inet ¼
2p
m0e

½rðr � peÞz	r¼rb
ffi am

2ppe

m0e

rb

2rs

� �
. (18)

The final approximate equality in Eq. (18) assumes
that the scale length for the change in pe from
center to beam edge is of order rs, and a coefficient
am of order unity is introduced to further reflect
that it is an approximation. [rs is approximately
the minimum of the ‘‘skin depth’’ dp ¼

c=ðe2np=�0meÞ
1=2 and the beam radius rb.] At lowest

order there is charge neutralization ðZbnb þ np ffi

neÞ (where nb, ne, and np are the beam, electron,
and plasma ion densities respectively) and current
neutralization ðqnbvb ffi neveÞ; so to lowest order
ve ffi vbðZbnb=ðnp þ ZnbÞ: This reduces to the
limits ve ffi vbðZnb=npÞ (if nb5np) or ve ffi vb (if
nbbnp).

The net current is thus approximately given by

Inet ffi ½Zbnb=ðZbnb þ npÞ	ðrb=rsÞ2p�0gmevbc2=e.

(19)

The contribution to the perveance from the net
current Qm is thus

Qm ¼
�qeInet

2p�0mic3bb
¼

�am
1þ f p

qme

mi

rb

2rs

� �
. (20)
Here f p � np=ðZbnbÞ: Note that the perveance is
negative, resulting in a net focusing of the beam,
but is less than (but can approach the order of
assuming asc ¼ am; rbo  rs and f p4  1) the
defocusing perveance from space charge in the
case of a plasma plug (where electrons are
entrained into the beam over a finite distance, in
contrast to the present assumption of nearly
unlimited electrons allowed to be dragged trans-
versely into the beam over the entire length of
propagation of the beam). (See Ref. [25] for
a complete and more rigorous derivation of
Eq. (20).) This model may be appropriate for the
steady-state portion of the main pulse, for which a
‘‘foot’’ pulse has heated the target and preionized
the plasma in the vicinity of the target, and a
plasma ‘‘plug’’ has provided a plasma near the
entrance of the chamber. Thus, Eq. (20) may be
used to estimate the final perveance in Eq. (5), for
the main pulse of the target. Note that the scaling
for volumetric plasmas has been found to be quite
different from plasma plugs [27]. In Ref. [27] it is
shown that the effective perveance is quite
independent of initial beam perveance (in contrast
to Eq. (14)) and that the neutralization is most
dependent on whether the quantity opDt is
5 or b1; the latter condition, required for validity
of Eq. (20). Here op is the electron plasma
frequency and Dt is the ion beam pulse duration.
For determining emittance growth in the cham-

ber, it is still appropriate to use Eqs. (14) and (16),
since the ‘‘plasma plug’’ perveance will determine
the emittance growth for a large fraction of the
chamber.
In applying these equations, one should bear in

mind that these are approximate relations, in-
tended to obtain the correct scaling over variations
in accelerator or beam parameters. At this point of
our understanding, detailed simulations are still
needed to accurately predict the spot radius for a
given set of beam and plasma parameters.
3. Summary of model

For an approximate determination of the semi
major axes of the final elliptical spot in a systems
code (such as IBEAM), a knowledge of the beam
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emittance and fractional momentum spread on
entrance to the final focus section, perveance while
propagating through the chamber, final conver-
gence angle y; and final focal distance d, are
needed. The final emittance may be calculated by
adding in quadrature estimates of the emittance
from the various sources

�2x ¼ �2xa þ a2cxd2 dp

p

� �2

y4x

þ 1:16� 106a2gl2quady
8
x þ a2scQ

2
cd2

and

�2y ¼ �2ya þ a2cyd2 dp

p

� �2

y4y

þ 1:16� 106a2gl
2
quady

8
y þ a2scQ

2
cd

2. ð21Þ

The approximate solutions to the envelope equa-
tions (Eq. (5)) can then be used to estimate the
elliptical spot radii.
3.1. Example: 4.4 GeV, 1.1 kA bismuth beam

To demonstrate the magnitude of the various
contributions to the focal spot we take as a
‘‘typical’’ example a beam from a driver with ion
species bismuth (209 amu), a single beam current
of 1.9 kA, and ion energy 4.0GeV. These para-
meters are similar to those for a main pulse of the
‘‘Robust Point Design’’ of Ref. [30]. The 1.9 kA is
a result of a factor of 17 increase in current in the
drift compression section. For a source with radius
5 cm and temperature 1.0 eV the normalized
emittance of such a beam would be 0.23mmmrad,
which, allowing for optics imperfections, may be
0.46mmmrad at the end of a 15 cm, 600 kV
injector diode. The current of such a beam would
be 0.6A, through the end of a 2MV ðb ¼ 0:00453Þ
injector.

Accelerating, in a magnetic quadrupole lattice
from 2MeV to 4GeV, the line charge density
increases by about a factor of 2.5, so the quantity
 4b2Qa2 ¼ 2qla2=ðp�0mc2Þ increases by this
amount also. For a 2 cm beam, at 0.44 mC/m,
and 0.1% DBq=Bq the normalized emittance growth
per quadrupole would be 8� 10�3mmmrad.
Taking into consideration d ln l=d lnV ¼ 0:12;
with an accelerator with 675 quads, the nor-
malized emittance has increased by only
0.33mmmrad, which gives a combined emittance
from injector and quads to be 0.57mmmrad. This
is somewhat ideal, but sets goals for what is
possible. Similarly, the fractional parallel momen-
tum spread can be estimated from Eq. (9). For an
initial pulse of 30 ms that is compressed to 170 ns
in the accelerator and then down to 10 ns at the
final focus, using d lnDt=d lnV ¼ �0:62; we
find a contribution to dp=pf of 6� 10�4, from
errors in the induction gaps. For an injector
voltage error of 10�3, we find a contribution to
dp=pf of 4.5� 10�4, so that the predicted total
dp=pf is 7.5� 10�4.
With this fractional momentum spread, a final

focus distance of 6m, a final focusing angle y of
10mrad, and acx of 4, then �ncx is 0.35mmmrad.
With these parameters, and ag ¼ 0:32; a 1.6m final
magnet, then Eq. (18) (emittance from geometric
aberrations) suggests that �ng ¼ 2:0mmmrad:
(Note that in calculating chromatic and particu-
larly geometric aberrations, a magnet layout is
generally needed. For Ref. [30] the layout involved
a number of constraints based on spot size, magnet
construction difficulty, magnet replacement rate
(minimization of magnet activation), and thresh-
olds for angular array extent (dictated by target
considerations) and maximum tolerable beam
ellipticity (to avoid additional emittance growth).)
Finally, while propagating in the chamber, for this
example, from Eqs. (19) and (20), a final perveance
of 5.2� 10�6, could be reached, if aQZeff ¼ 2; and
a ‘‘plasma plug’’ is the source of neutralization.
This would lead to a normalized emittance
contribution �nsc ¼ 3:1mmmrad (if asc ¼ 0:5).
The sum of all normalized emittances is
3.7mmmrad, in this example, which, when in-
cluded with the perveance term in Eq. (5), yields a
final spot size of rx of 2.2mm. If there is
photoionization of chamber gas by the heated
target, then the plasma density may be as high as
3.5� 1013 cm�3, and the beam density may be as
high as 7.1� 1012 cm�3, so that fp may be of order
unity and rb=2rs may also be of order unity, so that
the final perveance may be  �5� 10�6: If the
emittance growth is assumed to be the same (due
to the same conditions as occur in the plasma plug
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throughout most of the chamber, but that the final
perveance determines the contribution to the space
charge term in Eq. (5)) then the final spot radius
would be 1.6mm. Both results would meet the
target requirements. This example illustrates the
most recent realization that neutralization in the
chamber (and the associated non-linear electric
fields) may be the dominant source of beam
emittance throughout the entire system. When
the equilibrium perveance is larger than the bare
beam perveance, then the final perveance and
emittance growth (and hence spot size) is largely
independent of beam parameters. However, for
small enough beams neutralization (and associated
emittance growth) may not be significant and the
other terms in Eq. (27) may be the largest
contributors.
4. Improvements to the model

Corrections: Corrections of beam aberrations
using non-linear optics have been suggested by
several authors and have not been included in the
focal spot model. These include corrections to
geometric aberrations using octupoles [32] and
corrections to chromatic aberrations (using com-
binations of sextupoles/dipoles) [33]. Time-depen-
dent focusing has also been suggested to correct
chromatic aberrations [31,34,35]. This latter idea is
that at the beginning of the drift compression,
there is a strong correlation between longitudinal
position and velocity. One could then, in principle,
give each velocity class upstream (before drift
compression) a time-dependent variation in the
quadrupole field strength such that when that
velocity class passes through the final focus optics,
each velocity class will focus to the correct spot,
thus minimizing chromatic aberrations [31]. Two
possible problems are (1) the correct quadrupole
variations upstream to optimize the focal spot may
cause the beam to be mismatched, and (2) space
charge may cause various velocity classes to be
mixed at the final focus so the correction may not
be so effective, (but there could still be some
benefit). Multiple corrections might also be made
during the drift compression. Correcting closer to
final focus reduces the precision needed, as there
are fewer betatron periods between the correction
point and the final focus, but the correlation
between velocity and longitudinal position is going
down, so the corrections may become less effective
the closer the beam is to final focus. Also, as the
pulse duration decreases towards 10 ns, the tech-
nological challenges may increase. The efficacy of
these various correction schemes has yet to be
determined. Assuming that they are successful,
their impact on the overall configuration of an
optimized accelerator and on the cost of electricity
can be determined by setting acx; acy; ag to zero or
to some small value.

4.1. Emittance growth model

In addition to voltage errors contributing to the
longitudinal emittance, simulations show that a
transverse/longitudinal instability will grow until
the longitudinal temperature is roughly a third to
half of the transverse temperature. For an initial
transverse temperature kT of 2 eV, an injection
voltage VI of 2MV, the corresponding dp=p 

ðkT=½4qV I	Þ
1=2

 5� 10�4; so it is apparent that
injector voltage waveform errors are initially
somewhat more important than thermalization of
transverse temperature, but this should be tracked
throughout the accelerator. Another source of
longitudinal emittance growth is timing jitter from
the confining (‘‘ear’’) waveform pulsers. This will
be a source of space charge waves that can
propagate to the interior of the beam. Even if
the waves do not thermalize they will contribute to
chromatic aberrations to the focal spot if not
corrected. A simple model to account for jitter
could be incorporated into the emittance growth
model.
5. Conclusion

We have constructed a source-to-target model
of the emittance evolution of a heavy ion beam.
We have used the envelope equations to estimate
the semi-major axes of the beam spot radius on the
target including the combined effects of emittance
contributions from the injector temperature,
quadrupole focusing errors in the accelerator,
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chromatic and geometric effects in final focus,
non-linear and incomplete neutralization in the
chamber. The chromatic effects are determined
from an estimate of longitudinal velocity
spread arising from injector and induction gap
voltage errors through the accelerator. We have
estimated the size of the various effects for
one example set of parameters, and have
found that the contribution from non-linear space
charge effects in the chamber can be the dominant
source of emittance growth, and is insensitive to
beam parameters. Further refinement of these
estimates, using PIC codes for benchmarking, is
in progress.
Appendix A. Moment equations for chromatic

aberrations

We start with the equation of motion for a beam
ion in a quadrupolar external field and include the
effects of space charge distributed in an elliptical
distribution. The x-component of the equation of
motion is

dpx

dt
¼ qðEx þ vzBy � vyBzÞ. (A.1)

Here Ex is the x component of the space charge
field of the beam, and By and Bz are the y and z

components of the magnetic field of the quadru-
pole. Expanding through second order in x0, y0,
kb0x; kb0y; dp=p yields

x00 þ
1

gvz0

d

dz
ðgvzÞ

� �
x0

ffi
qB0

gmvz0
x 1�

dp

p

� �

þ
ql

4p�0mv2z0

ðx � x̄Þð1� 2dp=pÞ

ðDx2 þ ½Dx2Dy2	1=2Þ
. ðA:2Þ

This equation (when dðgvzÞ=dz ¼ 0) can be written
as

x00 ffi Kxxx þ Kxx1xdp=p. (A.3)

Similarly, the y-equation of motion can be written
as

y00 ffi Kyyy þ Kyy1ydp=p. (A.4)
Here

Kxx ¼ �
B0

Br½ 	0
þ

2Q

2ðDx2 þ ½Dx2Dy2	1=2Þ

Kxx1 ¼ � �
B0

Br½ 	0
þ

2Q

2ðDx2 þ ½Dx2Dy2	1=2Þ

� �

Kyy ¼
�B0

Br½ 	0
þ

Q

2ðDy2 þ ½Dx2Dy2	1=2Þ

Kyy1 ¼ �
�B0

Br½ 	0
þ

2Q

2ðDy2 þ ½Dx2Dy2	1=2Þ

� �
. ðA:5Þ

Here, B0 ¼ magnetic gradient, Br½ 	 ¼ ion rigidity
¼ p=q and Q ¼ perveance ¼ ql=ð2p�0g30mv2z0Þ:
Let d � dp=p: Noticing that

1

1þ d
¼ 1� dþ d2 þ . . .

and

1

1� d
¼ 1þ dþ d2 þ . . .

so that

1

1� d
�

1

1þ d
¼ 2dþ 2d3 þ . . .

and also

d
1þ d

¼ 1�
1

1þ d
.

We may perform averages over the distribution
function and obtain the set of moment equations

d

ds
x2

 �

¼ 2 xx0

 �

d

ds
xx0

 �

¼ x02

 �

þ Kxx x2

 �

þ
Kxx1

2

x2

1� d

� �

�
x2

1þ d

� �
þ Oðx2d3Þ

d

ds
x02

 �

¼ 2Kxx xx0

 �

þ Kxx1
xx0

1� d

� �

�
xx0

1þ d

� �
þ Oðxx0d3Þ
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Table 1

Summary of constants in emittance growth model

Quantity Nominal

value

Comments

acx; acy 4 Normalized emittance growth

from chromatic aberrations;

dependent on final focus

magnet layout, and initial

correlation of x and dp=p

ag 0.32 Normalized emittance growth

from geometric aberrations;

dependent on final focus

magnet layout

aQ 2 Normalization constant in

final perveance for ‘‘plasma

plug’’ neutralization methods

am 1 Normalization in final

perveance for ‘‘zero vorticity’’

model

asc 0.5 Normalization in emittance

growth rate due to space

charge non-linearity; depends

on distribution of space charge
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d

ds

xx0

1þ d

� 
¼

x02

1þ d

� 
þ Kxx

x2

1þ d

� 

� Kxx1
x2

1þ d

� 
þ Kxx1 x2


 �

d

ds

x02

1þ d

� 
¼ 2Kxx

xx0

1þ d

� 
þ 2Kxx1 xx0


 �
� 2Kxx1

xx0

1þ d

� 
. ðA:6Þ

The equations for y are identical with the
substitution y ! x; in all variables and subscripts.
Note that the error terms in Eq. (A.6) are two
orders of d higher than the effective order of the
term in brackets and are thus dropped. In practice,
this limits the integration distance over which the
equations may be used, but over a short number of
lattice periods as in a final focus system, the system
of equations is quite accurate. When candidate
final focus systems are evaluated, we find that the
scaling � / Dp=p is satisfied, and when the factors
yx; yy; and d are included in the normalization of
the relation, the factors acx and acy depend on the
particular final focus system, (and on the initial
phase of the matched period for which the value of
hxdi ¼ 0 is assumed), but are in the range 4–12.
Table 1 summarizes the dimensionless parameters
of order unity used in calculating the final ion
beam emittance on the spot. Generally, simula-
tions are required to determine each a:
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